Nagłówek i logo firmy Elegron

O firmieAktualnościOfertaDo pobraniaKontakt

Urządzenie wielofunkcyjne ProtonShooter

Na zlecenie oraz we współpracy z Laboratorium Badawczo-Usługowym PROTON powstał projekt wielofunkcyjnego urządzenia - ProtonShooter. Głównym elementem składowym tego urządzenia są superkondensatory, których dostawcą jest właśnie Laboratorium Badawczo-Usługowe PROTON.
Laminat użyty w sterowniku został wykonany w firmie SATLAND w technologii druku dwuwarstwowego z pogrubioną warstwą miedzi do 70um.
OPIS STEROWNIKA
    Aby wykorzystać możliwości, jakie niosą ze sobą superkondensatory, trzeba sprostać ich wymaganiom.
Jednym z głównych problemów, jaki napotka każdy, kto chce wykorzystać w swoim urządzeniu superkondensatory, jest ich ładowanie. Kondensatory wielkiej pojemności w stanie rozładowanym jako odbiornik stanowią praktycznie zwarcie dla obwodu zasilania. Dlatego też potrzebny jest układ ograniczający prąd ładowania tak, aby nie przekraczał on wartości bezpiecznej dla źródła zasilania. Ponadto bardzo ważne jest, aby w końcowej fazie ładowania superkondensatora nie przekroczyć dopuszczalnego maksymalnego napięcia tego kondensatora. Kolejnym problemem do rozwiązania jest równomierność ładowania baterii kondensatorów i rozkładu napięć na poszczególnych elementach.
    Dla większości zastosowań jeden superkondensator ma za niskie napięcie i nie jest bardzo przydatny. Aby podnieść napięcie pracy trzeba połączyć wiele superkondensatorów musi być umieszczonych szeregowo. Ponieważ istnieje różnica tolerancji pomiędzy poszczególnymi superkondensatorami w pojemności, rezystancji i prądzie upływu nastąpi nierównowaga napięć sekcyjnych stosie szeregowym. Ważne jest, aby zapewnić, żeby poszczególne napięcia każdego superkondensatora nie przekraczały maksymalnego napięcia pracy, gdyż może to doprowadzić do rozkładu elektrolitu, wytworzenie gazu, wzrost ESR, a w ostateczności żywotność zostanie zmniejszona.
    Ten brak równowagi w początkowej fazie ładowania zdominowany jest przez różnicę między pojemnością poszczególnych kondensatorów tj. kondensatory o mniejszej pojemności będą ładować się do wyższego napięcia w połączeniu szeregowym. Na przykład, jeśli dwa kondensatory 10F są połączone szeregowo z czego jeden ma +20% nominalnej pojemności, a drugi -10%, to napięcia między kondensatorami można obliczyć ze wzoru:
Vcap1 = Vsupply x (Ccap1 / (Ccap1 + Ccap2)
Zakładając Vsupply = 5,4V
Vcap1 = 5,4 x (12 / (12 +9)) = 3,08V
Vcap2 = 5,4 – 3,08= 2,32V
    Jak widać, system równoważenia komórek musi zostać umieszczony w połączeniu szeregowym w celu zapewnienia ażeby poszczególne napięcia składowe nie przekroczyły napięcia znamionowego superkondensatorów.


    Gdy bateria superkondensatorów będzie ładowana przez dłuższy okres czasu to prąd upływu zacznie odgrywać coraz większą rolę (tj. kondensatory o wyższym prądzie upływu będą miały niższe napięcie rozdzielania napięcia w połączeniu szeregowym).
    Istnieją dwa systemy równoważące do rozwiązania tego problemu oraz zapewniające odpowiednie wyważenie modułów.
Są to:
    Metoda pasywna: Aby zrekompensować różnice pomiędzy superkondensatorami stosuje się połączone z nimi równolegle rezystory w każdym module baterii. To skutecznie zmniejsza zmienność równoważnej rezystancji równoległej między kondensatorami, która jest odpowiedzialna za prądu upływu. Na przykład, gdy kondensatory mają średni prąd upływu 10uA +/- 3uA, a przez jednoprocentowy opornik równoległy popłynie 100uA, to będzie to dobrym rozwiązaniem. Przy takim rezystorze równoległym do każdego kondensatora średni upływ prądu jest teraz 110uA +/- 4uA. Wprowadzenie tego rezystora zmniejszy zróżnicowanie prądu upływu z 30% do 3,6%.
    Przez taką samą wartość rezystora równoległego przy wszystkich elementach stosu szeregowego, z kondensatora o wyższym napięciu, popłynie większy prąd. Rozładowanie przez równoległy rezystor będzie wyższe niż w kondensatorach z niższym napięciem. To pomoże zrównoważyć całkowity rozkład napięcia w całej serii kondensatorów.
    Metoda pasywna równoważenia napięcia jest zalecana tylko dla aplikacji, które nie są regularnie ładowane i rozładowywane i tylko tam, gdzie toleruje się dodatkowe obciążenie prądowe wnoszone przez rezystory bocznikowe. Sugeruje się, aby rezystory bocznikowe dobrane były tak, aby dać dodatkowy przepływ prądu - co najmniej 10 razy większy od prądu upływu kondensatorów. Wyższy stosunek może być stosowany w celu szybszego zrównoważenia. Kompromis oparty jest na stosunku czasu ładowania do prądu upływu. Gdy bateria superkondensatorów pracuje w układzie statycznym, czas dojścia do równowagi nie stanowi problemu, kłopoty zaczynają się, gdy taka bateria jest cyklicznie ładowana i rozładowywana.
    Aktywna kompensacja: Do zastosowań, gdzie następuje cykliczne ładowanie i rozładowywanie kondensatorów oraz tam, gdzie wymagany jest znacznie mniejszy prąd upływu w stanie ustalonym. Taka kompensacja wymaga większych prądów tylko wtedy, kiedy napięcie ogniwa jest niezrównoważone. Aktywny układ wymusza jednakowe napięcie na węzłach serii połączonych kondensatorów.
    Oprócz zapewnienia dokładnego równoważenia napięcia, aktywne układy dają znacznie niższy poziom prądu w stanie naładowania, a jedynie wymagają większych prądów, gdy napięcie kondensatora wychodzi z równowagi. Te cechy sprawiają, że aktywne obwody kompensacji napięcia są idealne dla aplikacji częstego ładowania i rozładowania kondensatorów, jak również te, o ograniczonym źródle energii.


    W naszym projekcie zastosowaliśmy aktywne układy kompensacji zalecane przez producenta superkodensatorów.
    Jako ograniczenie prądu ładowania można zastosować rezystor połączony szeregowo pomiędzy źródłem zasilania a baterią superkondensatorów, jednakże takie rozwiązanie jest mało ekonomiczne bo wiąże się z bardzo dużymi startami mocy na owym rezystorze. Dużo lepszą metodą jest zastosowanie impulsowego źródła prądowego zamiast rezystancji szeregowej. W naszym projekcie rolę taką pełni układ BTS555 – jest to jedynie układ wykonawczy, nad którym nadzór sprawują inne elementy peryferyjne. BTS555 (Highside High Current Power Switch) posiada jedno wejście sterujące oraz jedno wyjście kontrolno pomiarowe. Stan wysoki podany na wejście BTS555 powoduje jego otwarcie natomiast stan niski - jego zamknięcie. Na wyjściu pomiarowym pojawia się napięcie proporcjonalne do przepływającego prądu przez BTS555.
    Napięcie z wyjścia pomiarowego BTS555 (IS) doprowadzane jest przez dzielnik (R31 PR3) do wejścia układu całkującego (R60 C76). Sygnał napięciowy z układu całkującego doprowadzony jest do tranzystora Q9, którego bramka chroniona jest diodą zenera D25 przed zbyt wysokim napięciem. Za pomocą potencjometru PR3 należy nastawić maksymalny dopuszczalny prąd, jaki można pobierać z zasilacza, w naszym projekcie jest to 20A.
    Przepływający prąd na wyjściu (OUT) o wartości 20A spowoduje, że na wyjściu (IS) też popłynie prąd 30tys. razy mniejszy czyli 0,66mA. Taki prąd przepływający przez dzielnik (R31 PR3) spowoduje odłożenie się na nim napięcia. Właśnie to napięcie reguluje potencjometr PR3. Należy je tak ustawić, aby po przekroczeniu 20A na wyjściu (OUT) z BTS555 napięcie z dzielnika załączyło tranzystor Q9. Włączenie tranzystora Q9 w nie następuje natychmiast gdyż jest opóźnione przez układ całkujący (R60 C76) natomiast jego wyłączenie również jest opóźniane przez kondensator C39 i połączony z nim rezystor R58. Napięcie z kondensatora C39 steruje tranzystorem Q8. Cały ten układ tranzystorów ma za zadanie opóźnianie załączenia i wyłączenia układu BTS555 tworząc impulsowe źródło prądowe, którego średni prąd będzie wynosił 20A, mimo że chwilowy może go przekroczyć.
    Układ ten doskonale sprawdza się jako ogranicznik prądu w początkowej fazie ładowania baterii superkondensatorów. Aby proces ładowania przebiegał szybko, potrzebne jest napięcie zasilające wyższe od napięcia znamionowego zestawu kondensatorów. W naszym projekcie zasilacz ma na wyjściu 35V, gdy napięcie znamionowe baterii kondensatorów wynosi 21,2V (8*2,65V). Ta różnica napięć pozwala na utrzymanie praktycznie stałego wysokiego prądu ładowania, jednakże napięcie ładowania musi być natychmiast wyłączone po osiągnięciu wartości znamionowej kondensatorów. Rolę kontroli napięcia pełni dzielnik (R64 R32) z filtrem. Wszystkie sygnały sterujące i pomiarowe muszą być odseparowane galwanicznie pomiędzy obwodem wykonawczym a sterującym. Zapobiega to zakłóceniom, jakie obwód wykonawczy mógłby wnosić do obwodu sterującego. Dlatego napięcie z dzielnika (R64 R32) doprowadzane jest do przetwornika A/C mikrokontrolera poprzez wzmacniacz operacyjny U20b i transoptor z wyjściem analogowym IL300 (U22). W chwili osiągnięcia napięcia znamionowego na superkondensatorach, mikrokontroler wyłączy układ BTS555 poprzez transoptor U13. W celu dodatkowego zabezpieczenia baterii kondensatorów przed skutkami przekroczenia napięcia znamionowego w wyniku zawieszenia się mikrokontrolera lub innej awarii układu sterującego, zastosowaliśmy przekaźnik odcinający napięcie zasilające sterowany poprzez wzmacniacz operacyjny U25. Wzmacniacz ten pracuje jako przerzutnik z dużą histerezą napięć przełączających. Zapobiega to „migotaniu” styków przekaźnika. Napięcie wyłączenia awaryjnego ustawiane jest za pomocą potencjometru PR4 i ustawiane jest na 21,6V. Ponowne załączenie przekaźnika nastąpi dopiero po obniżeniu napięcia na superkondensatorach poniżej 2V lub po ponownym uruchomieniu całego układu.
    Do mikrokontrolera doprowadzone są dwie informacje o wartości prądu ładowania. Jedna pochodzi z przetwornika prądowego
LEM25, a druga z wyjścia (IS) BTS555. O ile LEM25 sam w sobie ma odizolowane wejście od wyjścia, o tyle z wyjścia pomiarowego BTS555 sygnał przeprowadzany jest podobnie jak w przypadku pomiaru napięcia poprzez wzmacniacz operacyjny (U20a) i transoptor (U21) z wyjściem analogowym. Oba te sygnały doprowadzane są do wejść przetworników A/C w mikrokontrolerze.
    Mikrokontroler połączony z wyświetlaczem sterowany jest za pomocą czteroprzyciskowej klawiatury. Jednocześnie złącze klawiatury stanowi wejście do programowania mikrokontrolera. Do zmiany funkcji złącza klawiatura/programator służą jumpery na złączu „program”. Oprócz klawiatury sterowanie mikrokontrolerem może odbywać się również przez dwa wejścia transoptyczne opisane jako foodswitch (U15) (wyłącznik nożny) oraz Ext.on/off (U16), do którego można doprowadzić sygnał z innego urządzenia np. ze stołu CNC. W celu komunikacji zwrotnej (od mikrokontrolera do urządzeń zewnętrznych) zastosowaliśmy dwa wyjścia: jedno z wyjść jest typowym TTLem (U14), a drugie jest typu otwarty kolektor (Q6) i może wystawiać wysokonapięciowe stany logiczne.
Sterowanie tranzystorem wykonawczym (realizującym funkcje zgrzewania, cięcia i elektrodrążenia) odbywa się poprzez driver TC4452 (U23). Wejście U23 również jest separowane od mikrokontrolera poprzez transoptor U17.
Jako zasilanie transoptorów oraz drivera zastosowaliśmy trzy przetwornice DC/DC (-5V,+5V oraz +12V). Przetwornice te są zasilane ze stabilizatora LM2575-12 (U11) natomiast mikrokontroler posiada własny (oddzielny) stabilizator 7805 (U12).
    Aby chwilowe (duże) pobory prądu przez driver nie zakłócały pracy, przetwornic zastosowaliśmy filtry na ich wyjściach.
    Dodatkowo do sygnalizacji stanu całego urządzenia oprócz wyświetlacza LCD zastosowaliśmy dwie diody LED. Jedna informuje o stanie gotowości do pracy natomiast druga zapala się podczas ładowania baterii kondensatorów.

    W dziale "do pobrania" znajduje się pakiet dodatkowych informacji, dokumentacja uzupełniająca oraz szczegółowy spis elementów wraz z opisem ich roli w układzie sterownika.
    Na
stronie Michała Obrzydzińskiego znajdziecie Państwo zarówno reportaż z prac nad prototypem jak również informacje dotyczące dostępności superkondensatorów.
    W chwili gdy kończone były testy, wiadomo już było że musi powstać poprawiona wersja sterownika.
Zmiany jakie muszą zostać uwzględnione w nowej wersji to przedewszystkim:
    - usunięcie zduplikowanego pomiaru prądu ładowania - zostaje zlikwidowany LEM,
    - rozdzielenie sterowania obwodem ładowania i impulsów od wyświetlacza (wyświetlacz dostanie osobny kontroler który też będzie odpowiadał za komunikację z komputerem przez RS),
    - zmiana drivera z TC4452 na HCPL316 (TC4452 ma za niskie napięcie pracy natomiast HCPL oferuje dodatkowo ochronę tranzystora wykonawczego),
    - zwiększenie wydajności chłodzenia BTS555,
    - dodanie obwodu aktywnego rozładowania baterii superkondensatorów.
Nowa wersja na tą chwile pozostaje komercyjna.

Alpar Teson TME plSerwis Proton Krzaczek Wezan Elgis Faldruk Serwison STM Wąsik Chronoss KN products